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MiR-215-5p is a tumor suppressor in
colorectal cancer targeting EGFR ligand
epiregulin and its transcriptional inducer
HOXB9
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Lenka Radova1, Dominika Brchnelova1, Katerina Slaba1, Marek Svoboda1,2, Jana Halamkova2, Regina Demlova3,
Igor Kiss2, Rostislav Vyzula2, Pablo Conesa-Zamora4 and Ondrej Slaby 1,2

Abstract
Growing evidence suggests that microRNAs are involved in the development and progression of colorectal cancer
(CRC). In the present study, deregulation and functioning of tumor-suppressive miR-215-5p was evaluated in CRC. In
total, 448 tumor tissues and 325 paired adjacent healthy tissues collected from Czech and Spain cohorts of CRC
patients have been used for miR-215-5p expression analyses. A series of in vitro experiments have been performed
using transient transfection of miR-215-5p mimics into four CRC cell lines to identify specific cellular processes affected
by miR-215-5p. Further, the effects of miR-215-5p on tumor growth were evaluated in vivo using NSG mice and stable
cell line overexpressing miR-215-5p. Target mRNAs of miR-215-5p were tested using luciferase assay and western blot
analyses. We found that miR-215-5p is significantly downregulated in tumor tissues compared with non-tumor
adjacent tissues and its decreased levels correlate with the presence of lymph node metastases, tumor stage, and
shorter overall survival in CRC patients. Overexpression of miR-215-5p significantly reduced proliferation, clonogenicity,
and migration of CRC cells, lead to cell cycle arrest in G2/M phase and p53-dependent induction of apoptosis. The
ability of miR-215-5p to inhibit tumor growth was confirmed in vivo. Finally, we confirmed epiregulin and HOXB9 to
be the direct targets of miR-215-5p. As epiregulin is EGFR ligand and HOXB9 is its transcriptional inducer, we suggest
that the main molecular link between miR-215-5p and CRC cells phenotypes presents the EGFR signaling pathway,
which is one of the canonical pathogenic pathways in CRC.

Introduction
Colorectal cancer (CRC) is the third most common

cancer worldwide and the fourth leading cause of cancer
related deaths. Despite the fact that the incidence and
mortality rates have been steadily declining, >50% of all
patients with CRC will die of the disease1. In recent years,

many different classes of non-coding RNAs have been
identified as key regulators of various cellular processes
including cell proliferation, differentiation, apoptosis or
migration2–5. MicroRNAs (miRNAs) are short single-
stranded non-coding RNAs that post-transcriptionally
regulate gene expression by binding to 3′ untranslated
regions of target mRNAs6. Many studies have shown they
can act as both oncogenes and tumor suppressors and
their deregulation has been associated with the initiation
and progression of a wide range of human diseases,
including cancer7, 8. In addition, association between
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miRNA expression, prognosis and therapy response pre-
diction was repeatedly described9, 10.
Over the past decade, several miRNAs with deregulated

expression in CRC have been identified, including miR-
215-5p11–15. We focus on miR-215-5p as we identified this
miRNA to be downregulated in colorectal tumor tissue in
our previous work11, where it indicated also promising
tumor-suppressive features in preliminary in vitro func-
tional screen11. In general, this miRNA is supposed to
function as a tumor suppressor and its levels are often
downregulated in tumor tissues. However, its role in CRC
pathogenesis has not been fully elucidated yet. In 2008,
miR-215 has been shown to act as an effector as well as
regulator of p5313. Further, denticleless protein homo-
log14 and thymidylate synthase15 were confirmed to be the
miR-215-5p targets. Low expression levels of miR-215-5p
were associated with resistance to 5-fluorouracil-
containing adjuvant chemotherapy16. Finally, the dereg-
ulation of this miRNA is supposed to be a very early event,
which is not dependent on the mechanism of initiation of
transformation, suggesting that miR-215-5p is likely to
regulate critical signaling pathways that are crucial for
early transformation of colonic epithelial cells12.
In this study, we have determined expression levels of

miR-215-5p in two large independent cohorts of CRC
patients to confirm its downregulation in tumor tissue
and prognostic potential. To further discover the role of
miR-215-5p in CRC pathogenesis, we have performed
deep in vitro analyses with the aim to describe the most
significantly affected CRC cells phenotypes and identify
mRNA targets and the key signaling pathways affected by
miR-215-5p. The role of miR-215-5p in regulation of
tumor growth was evaluated also in vivo using mouse
model.

Results
MiR-215-5p is downregulated in CRC tissues and its low
levels correlate with aggressive disease
It was confirmed that the expression of miR-215-5p is

significantly downregulated in tumor tissue compared
with adjacent mucosa (P< 0.0001; Fig. 1a) in case of
Czech cohort (Table 1). In addition, the levels of miR-215-
5p decreased progressively with advanced clinical stages
(P< 0.0001; Fig. 1c) and low expression was associated
with lymph nodes positivity (P< 0.0001; Supplementary
Fig. S1A). Further, significantly downregulated levels of
miR-215-5p were found not only in primary tumors, but
also in corresponding liver metastases (P< 0.0001; Sup-
plementary Fig. S1B). Survival analyses proved that
patients with low levels of miR-215-5p have significantly
shorter overall survival (OS) (P= 0.0024; cut-off 0.02393;
Fig. 1e) compared with patients with higher expression
levels.

To further validate these observations, an independent
cohort from Spain was included in the study (Table 1). As
in the Czech cohort, the expression of miR-215-5p was
significantly downregulated in tumor tissues (P< 0.0001;
Fig. 1b) and its low levels were associated with advanced
clinical stage (P= 0.0185; Fig. 1d), but not with the lymph
node positivity (Table 1). Again, the low levels of miR-
215-5p were associated with shorter OS and worse
prognosis of CRC patients (P= 0.0111; cut-off 0.2139;
Fig. 1f).

MiR-215-5p expression levels in CRC cells
MiR-215-5p expression levels in CRC cells used in our

study was performed by use of calibration curve (Sup-
plementary Fig. S7A) and absolute quantification. The
number of miR-215-5p copies varied among CRC cells
(Supplementary Fig. S7B). HCT-116+/+, HCT-116−/−,
DLD-1 and HT-29 were characteristic with very low
number of miR-215-5p copies ranging from 1351 to 3639
copies per 100 ng of total RNA purified from CRC cells.
On the contrary, the only CRC cells indicating multiple
time higher levels were CaCo2 cells with number of
copies 98 962 per 100 ng of total RNA. Based on this
results, HCT-116+/+, HCT-116−/−, DLD-1 and HT-29
cells were used as models for miR-215-5p substitution
and CaCo2 for miR-215-5p silencing.

MiR-215-5p inhibits proliferation, viability and colony
formation of CRC cells
By transfection of miR-215-5p, mimic reached sig-

nificant increase of miR-215-5p levels in all studied cell
lines, which was stable from 24 to 96 h. Expression levels
of miR-215-5p in cells transfected with miR-215-5p
mimic were 8000–10 000 times higher when compared
with mock-transfected control cells. Cell counting
demonstrated cell proliferation to be inhibited by ectopic
expression of miR-215-5p, with the best inhibition effect
being observed 96 h after transfection (P< 0.001 for
HCT-116+/+ and HT-29; P< 0.01 for DLD-1 and HCT-
116−/−; Figs. 2a, b, Supplementary Figs. S2A, B). Parallel
to cell counting, MTT (3-(4,5-dimetylthiazol-2-yl)-2,5-
difenyltetrazolium bromid) assay was performed to assess
the effect of miR-215-5p on cell viability. Similarly to
the previous results, the viability of CRC cells was sig-
nificantly reduced 96 h after transfection (P< 0.001 for
HCT-116+/+ and HT-29; P< 0.01 for DLD-1; P< 0.05 for
HCT-116−/−). To determine whether the alterations in
cell proliferation and viability were the result of cell cycle
regulation, flow cytometry was used. Ninety-six hours
after transfection, miR-215-5p decreased the proportion
of HCT-116+/+ (Fig. 2c), HCT-116−/− (Supplementary
Fig. S2C) and DLD-1 (Fig. 2d) cells in the G0/G1-phase
and increased the proportion of the cells in S-phase and
G2/M-phase compared with those transfected with
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control oligonucleotides. In case of HT-29 cells, only the
arrest in G2/M-phase was observed (Supplementary
Fig. S2D). To find out whether the inhibition of growth
induced by miR-215-5p was anchorage independent, the
cells were seeded on soft agar 24 h post-transfection. After

14 days, HCT-116+/+ and DLD-1 cells transfected with
miR-215-5p mimics formed significantly fewer colonies
than cells transfected with control oligonucleotide (P<
0.001; Figs. 2e, f).

Fig. 1 Expression analyses of miR-215-5p in CRC patients. a Expression levels of miR-215-5p are significantly decreased in CRC tissues compared
with healthy adjacent tissues (P < 0.0001; Czech cohort). b Expression levels of miR-215-5p are significantly decreased in CRC tissues compared with
healthy adjacent tissues (P < 0.0001; Spain cohort). c Expression of miR-215-5p significantly decreases with advanced clinical stage (P < 0.0001; Czech
cohort). d Expression of miR-215-5p significantly decreases with advanced clinical stage (P = 0.0185; Spain cohort). e Low levels of miR-215-5p
correlate with shorter OS of Czech CRC patients (P = 0.0024). f Low levels of miR-215-5p correlate with shorter OS of Spain CRC patients (P = 0.0111).
OS overall survival
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Table 1 Correlation of miR-215-5p expression with clinical-pathological features of CRC patients

n (%) miR-215-5p Czech cohort median (25–75%) n (%) miR-215-5p Spain cohort median (25–75%)

Age

Median (range) 66 (18–92) NA 73 (36–91) NA

Sex

Male 139 (55) 0.07 (0.02–0.15) 107 (55) 0.07 (0.03–0.17)

Female 113 (45) 0.07 (0.03–0.014) 89 (45) 0.10 (0.04–0.20)

P-value 0.9673 0.3508

Tumor vs. mucosa

Normal mucosa 252 0.51 (0.33–0.87) 73 0.58 (0.27–1.19)

Colorectal tumor 252 0.07 (0.03–0.14) 196 0.11 (0.05–0.25)

P-value <0.0001 <0.0001

Clinical stage n = 252 n = 192

I 43 (17) 0.14 (0.07–0.31) 23 (12) 0.15 (0.09–0.43)

II 78 (31) 0.07 (0.03–0.13) 82 (43) 0.08 (0.05–0.16)

III 60 (24) 0.04 (0.02–0.08) 64 (33) 0.08 (0.04–0.20)

IV 71 (28) 0.05 (0.02–0.12) 23 (12) 0.05 (0.03–0.15)

P-value <0.0001 0.0185

pT category n = 252 n = 193

pT1 4 (2) 0.30 (0.08–0.60) 10 (5) 0.04 (0.03–0.08)

pT2 51 (20) 0.09 (0.05–0.26) 18 (9) 0.05 (0.01–0.20)

pT3 172 (68) 0.06 (0.02–0.13) 124 (65) 0.09 (0.04–0.16)

pT4 25 (10) 0.04 (0.02–0.09) 41 (21) 0.10 (0.05–0.20)

P-value 0.0018 0.2515

Lymph nodes n = 252 n = 192

Negative 135 (54) 0.09 (0.04–0.21) 110 (57) 0.09 (0.05–0.19)

Positive 117 (46) 0.04 (0.02–0.10) 82 (43) 0.08 (0.04–0.20)

P-value <0.0001 0.4397

Distant metastases n = 252 n = 193

No 181 (72) 0.07 (0.03–0.14) 170 (88) 0.08 (0.04–0.15)

Yes 71 (28) 0.06 (0.02–0.15) 23 (12) 0.14 (0.03–0.30)

P-value 0.2780 0.3306

Grading n = 252 n = 196

G1 67 (27) 0.07 (0.03–0.26) 144 (73) 0.09 (0.04–0.20)

G2 132 (52) 0.07 (0.03–0.12) 47 (24) 0.08 (0.04–0.14)

G3 53 (21) 0.04 (0.02–0.16) 5 (3) 0.13 (0.02–0.31)

P-value 0.1771 0.4259

Tumor location n = 252 n = 194

Proximal colon 100 (40) 0.07 (0.03–0.18) 104 (54) 0.09 (0.04–0.19)

Distal colon 152 (60) 0.07 (0.02–0.13) 90 (46) 0.07 (0.03–0.17)

P-value 0.4787 0.1817

The P-values in bold are statistically significant
NA not applicable
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Fig. 2 (See legend on next page.)
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MiR-215-5p induces apoptosis of CRC cells in a wild-type
p53-dependent manner
Transfection of miR-215-5p into HCT-116+/+ cells (wt-

p53) significantly increased the number of apoptotic cells
by at least threefold (P< 0.001; Fig. 2g). Further, the levels
of cleaved PARP were increased subsequent to transfec-
tion with miR-215-5p (Fig. 2g). Importantly, transfection
of miR-215-5p mimics into HCT-116−/− (p53-null),
DLD-1 (mut-p53) and HT-29 (mut-p53) cells did not lead
to increased apoptosis rates and elevated levels of cleaved
PARP (Fig. 2h, Supplementary Figs. S2E–F).

MiR-215-5p inhibits migration of CRC cells
According to the results of scratch wound assay,

transfection of miR-215-5p mimics led to a significant
inhibition of cell migration (P< 0.001 for DLD-1, HCT-
116+/+ and HCT-116−/−; P< 0.05 for HT-29; Figs. 3a, b
and Supplementary Figs. S3A, B). In addition, transwell
migration assay confirmed significantly reduced migration
of cells overexpressing miR-215-5p. The inhibition rate
was 57± 16%, 37± 8%, and 50± 17%, respectively, in
HCT-116+/+ (Fig. 3c), DLD-1 (Fig. 3d), and HCT-116−/−

cells transfected with miR-215-5p mimics compared with
control group.

EREG and HOXB9 are direct targets of miR-215-5p
To better understand the role of miR-215-5p in CRC

pathogenesis, the TargetScan17, DIANA-microT18,
RNAhybrid19, miRanda20 and RNA2221 databases were
searched for the predicted targets of miR-215-5p asso-
ciated with cell proliferation and migration. Among the
target genes that were considered to be the most likely
involved in these processes, epiregulin (EREG)22 and
HOXB923 have been chosen for further analyses. It was
found that miR-215-5p transfection leads to the sig-
nificant decrease in mRNA levels of both genes of interest
(Figs. 4a-d). Subsequently, the luciferase reporter assay
was utilized to confirm direct interaction between miR-
215-5p and 3′-UTR of EREG and HOXB9. It was shown
that miR-215-5p suppressed 62± 6% of reporter activity
of the pEZX-MT05-EREG reporter compared with the
control oligonucleotide, whereas the pEZX-MT05-ctrl
vector was resistant to the inhibition (P< 0.001; Fig. 4e).
Similarly, the reporter activity of the pLSG-RenSP-
HOXB9 reporter was suppressed by 48± 3% after

transfection of miR-215-5p compared with control cells,
whereas the pLSG-RenSP-ctrl vector was resistant to the
inhibition (P< 0.001; Fig. 4f). In addition, western blot
analyses proved that overexpression of miR-215-5p sup-
presses the expression of both proteins 48 h after trans-
fection (Fig. 4g). To further support these data, depletion
of EREG and HOXB9 using small interfering RNA
(siRNA)-mediated knockdown was performed (Supple-
mentary Figs. S4A–D). It was shown that downregulation
of these two proteins leads to the significant decrease in
proliferation of HCT-116+/+ (P< 0.001 in case of EREG,
P< 0.01 in case of HOXB9; Supplementary Fig. S5A),
HCT-116−/− (P< 0.01 in case of EREG; Supplementary
Fig. S5B) and DLD-1 (P< 0.01 in case of EREG, P< 0.05
in case of HOXB9; Supplementary Fig. S5C) cells 96 h
after transfection. By use of scratch wound assay, we were
not able to prove any significant effects of EREG and
HOXB9 silencing on migratory capacity of studied cells
(P> 0.05). Finally, the levels of EREG and HOXB9 were
examined in the matched tumor and non-tumor tissues of
CRC patients. It was shown that the expression of EREG
and HOXB9 is significantly increased in tumor tissues
compared with healthy tissues (P< 0.01 for EREG,
P< 0.001 for HOXB9; Fig. 4h).

MiR-215 induces increase in E-cadherin expression
When we compared the expression levels of EMT

markers (E-cadherin, vimentin, ZEB1, ZEB2) in HCT-
116+/+-miR-215-5p cells and HCT-116+/+-control cells,
we observed significantly higher levels of E-cadherin (P=
0.0164, Supplementary Fig. S6) in miR-215-5p-positive
cells. There was no difference in vimentin and ZEB1
expression levels between studied cell lines. ZEB2 was not
detectable in both cell lines.

MiR-215-5p silencing facilitate proliferation of CRC cells
and induce expression of EREG and HOXB9
We successfully silenced miR-215-5p expression in

CaCo2 cells to 16% of its expression levels in control
CaCo2 cells transfected with anti-miRNA control oligo-
nucleotide (Supplementary Fig. S8A). Silencing of miR-
215-5p by use of anti-miR-215 in CaCo2 cells led to the
increase in expression levels of miR-215-5p targets EREG
and HOXB9 after 48 h (Supplementary Fig. S8B). Finally,
decreased levels of miR-215-5p facilitated proliferation of

(see figure on previous page)
Fig. 2 Effects of miR-215-5p overexpression on HCT-116+/+ and DLD-1 cells. a miR-215-5p significantly inhibits the proliferation of HCT-116+/+

cells. b miR-215-5p significantly inhibits the proliferation of DLD-1 cells. c miR-215-5p significantly reduce the clonogenicity of HCT-116+/+ cells. d
miR-215-5p significantly reduce the clonogenicity of DLD-1 cells. e Overexpression of miR-215-5p in HCT-116+/+ cells leads to a cell cycle arrest in G2/
M phase. f Overexpression of miR-215-5p in DLD-1 cells leads to a cell cycle arrest in G2/M phase. g miR-215-5p increases the apoptosis of HCT-116+/
+ cells in p53-dependent manner. h miR-215-5p increases the early apoptosis of DLD-1 cells. *P < 0.05, **P < 0.01, ***P < 0.001, CTRL control cells
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CaCo2 cells, which was significant at first (P= 0.03) and
second day (P= 0.02) post-transfection (Supplementary
Fig. S8C). We have not observed any significant effects of
miR-215-5p silencing on migratory capacity of CaCo2
cells by use scratch wound-healing assay (P> 0.05).

MiR-215-5p overexpression suppresses tumor growth
in vivo
To evaluate how miR-215-5p overexpression affects

tumor growth in vivo, subcutaneous tumors were gener-
ated in NSG mice using HCT-116+/+-miR-215-5p cells
and HCT-116+/+-control cells. It was confirmed that
HCT-116+/+-control tumors grow significantly faster
than the HCT-116+/+-miR-215-5p tumors (Figs. 5a–c).

Importantly, reverse transcriptase-quantitative PCR (RT-
qPCR) analysis showed that the expression of miR-215-5p
is still upregulated in HCT-116+/+-miR-215-5p tumors
compared with control tumors (Fig. 5d) 25 days from the
beginning of the experiment.

Discussion
Growing evidence suggests that miRNAs are involved in

the development and progression of different types of
human cancers24–26. In 2008, miR-215-5p was first
described as a tumor suppressor in CRC13. Since then,
several other authors studied prognostic and predictive
value of miR-215-5p14–16; however, its detail functioning
in the pathogenesis of the disease has not been clarified

Fig. 3 Effects of miR-215-5p overexpression on migration of HCT-116+/+ and DLD-1 cells. a miR-215-5p significantly reduce the migration of
HCT-116+/+ cells (transwell migration assay). b miR-215-5p significantly reduce the migration of DLD-1 cells (transwell migration assay). c miR-215-5p
significantly reduce the migration of HCT-116+/+ cells (scratch wound assay). d miR-215-5p significantly reduce the migration of DLD-1 cells (scratch
wound assay). **P < 0.01, ***P < 0.001, CTRL control cells
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Fig. 4 (See legend on next page.)
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yet. Thus, we have analyzed not only the diagnostic and
prognostic potential of miR-215-5p, but we also aimed to
identify its target genes and describe its involvement in
CRC cells phenotypes and particular signaling pathways.
We have confirmed that the expression of miR-215-5p

is significantly downregulated in tumor tissues compared
with paired healthy tissues and its reduced levels correlate
with higher clinical stage, presence of lymph node
metastases and shorter OS. These results are in agreement
with former studies27–30.
To identify specific cellular processes influenced by

miR-215-5p, series of in vitro experiments have been
performed. The results proved that higher levels of miR-
215-5p significantly reduce metabolic activity and pro-
liferation of CRC cell lines. The opposite effects were
observed when miR-215-5p silencing approach was used
in CaCo2 cells, where decreased levels of miR-215-5p led
to enhanced cellular proliferation. Similarly, the in vivo
experiments confirmed significantly slower growth of
tumors stably expressing this miRNA. In compliance with
previous studies13, 14, the inhibitory effect was more
profound in cells containing wild-type p53 (HCT-116+/+)
compared with p53-mutant (DLD-1, HT-29) or p53-null
(HCT-116−/−) cells. On the other hand, miR-215-5p
significantly reduced cell proliferation even in the absence
of p53; thus it seems that this miRNA slows down the
proliferation not only through the cell cycle arrest, but
also by affecting another signaling pathways independent
of p53 function. Concerning the cell cycle, transfection of
miR-215-5p lead to the significant arrest in G2/M phase.
These results again support the hypothesis of other pro-
teins than p53 being involved in reduced proliferation.
Georges et al. confirmed denticleless protein homolog to
be a direct target of miR-215-5p that interacts with
DDB1-CUL4 and MDM2-p53 ligase complexes and
influences the stability of p53 and its target p2131, 32.
Similarly, Boni et al. identified thymidylate synthase as
another target of miR-215-5p that was suggested to be a
predictive biomarker for 5-FU response in CRC. To find
out whether the inhibition of growth induced by miR-
215-5p was anchorage independent, the clonogenic assay
was performed15. It was revealed that number of colonies
is significantly lower in case of HCT-116+/+ and DLD-1
cells transfected with miR-215-5p mimics, but not in

HCT-116−/− and HT-29 cells indicating that this miRNA
could affect the cell clone formation by mechanisms that
are at least in part dependent on p53 functionality.
Interestingly, although carrying out the above experi-
ments significant morphologic changes in HCT-116+/+

cells transfected with miR-215-5p, such as round shape
and plate surface detachment, have been repeatedly
observed. These changes may have many reasons
including reduced expression of adhesion molecules, loss
of cell polarity, dysfunctional cytoskeleton or cell apop-
tosis33. Georges et al. identified discs large homolog 5 as
an important target of miR-215-5p31. It was shown that
this protein can interfere with cell adhesion through the
reduction of cadherin transport to the cell surface and it is
proposed to function in the maintenance of epithelial cell
structure34. Concerning the effect of miR-215-5p on cell
apoptosis, it was assessed that overexpression of this
miRNA leads to the significant increase of apoptotic rate
in case of HCT-116+/+ cells. Although the exact
mechanism of action is not known, it was proved that this
outcome is strongly dependent on the presence of wt-p53
and could be related to morphologic changes described
earlier. To date, no target genes of miR-215-5p associated
with cell apoptosis have been identified in CRC. Never-
theless, X-chromosome-linked inhibitor of apoptosis
(XIAP) was found to be regulated by this miRNA in
ovarian35 and non-small cell lung cancer36.
Further, we observed that higher levels of miR-215-5p

lead to a significant inhibition of cell migration. Inter-
estingly, the highest effect was determined in case of
DLD-1 cell line indicating the independence of p53 status.
In 2011, White et al. identified ZEB2 as a direct target of
miR-215-5p in renal cell carcinoma37. These results were
further confirmed using non-small cell lung cancer38 and
pancreatic cancer39 cell lines. Using the metastatic gene
profiling assay, several other genes involved in the
degradation of extracellular matrix or cell adhesion, such
as MMP7/13 or CDH1/6/11, have been described to be
affected by increased miR-215-5p expression in renal cell
carcinoma37; however, these targets need to be further
validated in CRC.
As our observations proved significant effects of miR-

215-5p on cell proliferation and migration, several data-
bases have been searched for the potential targets of miR-

(see figure on previous page)
Fig. 4 EREG and HOXB9 are direct targets of miR-215-5p. a RT-qPCR analyses proved significantly reduced mRNA levels of EREG and HOXB9 in
HCT-116+/+ cells. b RT-qPCR analyses proved significantly reduced mRNA levels of EREG and HOXB9 in DLD-1 cells. c RT-qPCR analyses proved
significantly reduced mRNA levels of EREG and HOXB9 in HCT-116−/− cells. d RT-qPCR analyses proved significantly reduced mRNA levels of EREG and
HOXB9 in HT-29 cells. e Luciferase assay confirmed EREG to be a direct target of miR-215-5p. f Luciferase assay confirmed HOXB9 to be a direct target
of miR-215-5p. g Western blot analyses proved downregulated protein levels of EREG and HOXB9 in CRC cells transfected with miR-215-5p mimics. h
Expression of EREG and HOXB9 is significantly upregulated in tumor tissues compared with non-tumor adjacent tissues. *P < 0.05, **P < 0.01,
***P < 0.001, CTRL control cells, HT healthy tissue, TT tumor tissue
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Fig. 5 Effects of miR-215-5p overexpression on tumor growth in vivo and its involvement in CRC pathogenesis. a Subcutaneously injected
HCT-116+/+-miR-215-5p cells formed significantly smaller tumors compared with HCT-116+/+-control cells 25 days after application into NSG mice
(n = 5). b Volume of in vivo formed tumors was significantly smaller in case of HCT-116+/+-miR-215-5p cells compared with HCT-116+/+-control cells. c
Weight of in vivo formed tumors was significantly smaller in case of HCT-116+/+-miR-215-5p cells compared with HCT-116+/+-control cells. d
Expression levels of miR-215-5p were significantly increased in HCT-116+/+-miR-215-5p tumors compared with HCT-116+/+-control tumors 25 days
after initiation of the experiment. e Involvement of miR-215-5p in CRC pathogenesis—direct targets of miR-215-5p described first in this study are in
red squares, direct targets of miR-215-5p described in previous studies are in brown. *P < 0.05, **P < 0.01, CTRL control cells, EMT
epithelial–mesenchymal transition, XIAP X-chromosome-linked inhibitor of apoptosis, ZEB2 zinc-finger E-box-binding homeobox 2, DTL denticleless
protein homolog, DLG5 discs large homolog 5, TYMS thymidylate synthase, HOXB9 homeobox protein HoxB9, EREG epiregulin
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215-5p associated with these processes. From the pre-
dicted genes, EREG and HOXB9 have been chosen for
further validation. The performed analyses proved these
two proteins to be the direct targets of miR-215-5p.
Moreover, their expression was significantly upregulated
in tumor tissue compared with adjacent healthy tissue.
EREG is a member of the epidermal growth factor family
that functions as a ligand of EGFR, which is commonly
overexpressed in CRC and present one of its main
molecular features38. HOXB9 is an important transcrip-
tion factor contributing to solid tumor invasion and
metastasis and its overexpression is associated with poor
prognosis40, 41. Interestingly, it was found that EREG
promoter contains the HOX-binding site and is a direct
transcriptional target of HOXB942. To date, no previous
study has confirmed EREG and HOXB9 to be direct tar-
gets of miR-215-5p. However, Wu et al. identified HOXB9
as a direct target of miR-192, a miRNA from the same
family and with a high homology to miR-215-5p43. The
most prominent regulatory effect of miR-215-1p on
HOXB9 was observed under p53-wild-type conditions, in
cell line HCT-116+/+, which could be partly explained by
the fact that miR-19213, 44 and miR-21544 have been
shown to be p53-responsive miRNAs. As miR-215-5p has
an ability to regulate EGFR ligand EREG and its tran-
scriptional inducer HOXB9, we suggest that the main
molecular link between miR-215-5p and CRC cells phe-
notypes presents the EGFR signaling pathway, which is
one of the canonical pathogenic pathways in CRC
(Fig. 5e).
In conclusion, we have confirmed a diagnostic and

prognostic potential of miR-215-5p in CRC patients in
two independent cohorts of patients. In addition, we have
proved the tumor-suppressive character of miR-215-5p
resulting in reduced proliferation, formation of new
colonies, and migration and increased apoptosis. These
results correspond with the fact that one miRNA has the
ability to regulate several target genes involved in different
signaling pathways. Although some of these effects were
dependent on the presence of wt-p53, miR-215-5p was
also able to slow down the tumor growth independently of
this protein. Importantly, two genes—EREG and HOXB9
—that are functionally linked to EGFR signaling and are
known to be involved in cell proliferation, migration and
disease progression have been validated as direct targets
of this miRNA. Thus, we believe that miR-215-5p could
serve as a potential therapeutic target in CRC.

Materials and methods
Patients and tissue samples
In total, 252 tumor tissue samples from patients with

histopathologically verified CRC who had undergone
surgery at Masaryk Memorial Cancer Institute (Brno,
Czech Republic) from 2004 to 2013, as well as 252 paired

adjacent non-tumor tissues were used for the determi-
nation of miR-215-5p expression levels. In addition,
17 samples of corresponding liver metastases obtained
from patients with metastatic CRC were used in our
study. Further, an independent set of tumor tissues from
196 patients who had undergone the surgery at Santa
Lucía General University Hospital (HGUSL, Cartagena,
Spain) from 2004 to 2015, as well as 73 paired adjacent
non-tumor tissues were involved in the study. All subjects
enrolled in the study were of the same ethnicity (Eur-
opean descent) and did not receive any treatment prior to
surgery. All patients were followed-up for tumor recur-
rence at regular intervals and survival time was calculated.
Clinical and pathological characteristics were recorded
and are summarized in Table 1. Written informed con-
sent was obtained from all participants and the study has
been approved by the local Ethical Boards in Masaryk
Memorial Cancer Institute and Santa Lucía General
University Hospital.

Tissue samples preparation and miRNA isolation
Tissue samples were homogenized (MM301, Retsch

GmbH & Co. KG, Germany) and total RNA enriched for
small RNAs was isolated using mirVana miRNA Isolation
Kit (Ambion, Austin, TX, USA) according to the manu-
facturer’s instructions. Concentration and purity of RNA
were determined spectrophotometrically by measuring its
optical density (A260/280> 2.0; A260/230> 1.8) using a
Nanodrop ND-1000 (Thermo Fisher Scientific, Waltham,
MA, USA).

Reverse transcription and RT-qPCR
For miRNA expression analyses, complementary DNA

(cDNA) was synthesized from 10 ng of total RNA using
gene-specific primers (has-miR-215-5p; ID 000518,
RNU48; ID 001006) according to the TaqMan MicroRNA
Assay protocol (Applied Biosystems, Foster City, CA,
USA) and real-time PCR was performed using TaqMan
Universal PCR Master Mix, NoUmpErase UNG (Applied
Biosystems) as described previously11. For quantification
of the number of miR-215-5p copies in CRC cells used in
our study, a dilution series of synthetic miRNA oligo
(IDT, Coralville, IA, USA) were carried out in parallel
with qRT-PCR of biological samples to generate an
absolute standard curve. MiR-215-5p levels in CRC cells
were expressed as number of copies per 100 ng of total
RNA purified from CRC cells. For the purposes of gene
expression analyses, cDNA was synthesized using 1000 ng
of total RNA and the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems) according to the
manufacturer’s recommendations. Quantitative PCR was
carried out using specific probes for EREG
(Hs00914313_m1), HOXB9 (Hs00256886_m1), PMM1
(Hs00160195_m1), CDH1 (Hs01023895_m1), VIM
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(Hs00958111_m1), ZEB1 (Hs01566408_m1), ZEB2
(Hs00207691_m1) and GAPDH (glyceraldehyde-3-phos-
phate dehydrogenase, Hs02758991_g1) (Applied Biosys-
tems). Real-time PCR was performed using the Applied
Biosystems 7500 Sequence Detection System.

Cell lines and cell culture
In this study, four human colon carcinoma cell lines

were used including HCT-116+/+ (CCL-247TM; wt-p53),
DLD-1 (CCL-221TM; mut-p53), HT-29 (HTB-38TM; mut-
p53), CaCo2 (HTB-37TM, mut-p53) and HCT-116−/−

(p53-null derivative). The first four cell lines were
obtained from American Type Culture Collection
(ATCC), the HCT-116−/− cells were kindly provided by
Dr Jiri Kohoutek (Veterinary research institute, Brno,
Czech Republic) who gained them from Dr Bert Vogel-
stein45. Cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine
serum, 100 µg ml−1 penicilin, 100 µg ml−1 streptomycin,
0.1 mM non-essential amino acids, 2 mM L-glutamin, 1
mM sodium pyruvate (Invitrogen, Gibco, Carlsbad, CA,
USA) in 5% CO2 at 37 °C. All cell lines were regularly
tested with MycoAlert (Lonza Group Ltd, Basel, Swit-
zerland) to ensure the absence of mycoplasma con-
tamination. Authentication of cell lines was done by
comparing STR (short tandem repeat) sequences obtained
from actual cell lines as determined by Generi Biotech
(Hradec Kralove, Czech Republic) with data public avail-
able (ATCC, ECACC—European Collection of Authen-
ticated Cell Cultures). Recent STR analysis has been
performed within 6 months before the beginning or in the
course of the experiments for all cell lines.

Cell transfection
All cell lines were transfected with 10 nM hsa-miR-215-

5p mimic (MC10874) or miRNA Mimic, negative control
#1 (4464058) or 33 nM hsa-miR-215-5p inhibitor
(MH10874) or 33 nM miRNA inhibitor, negative control
(4464079) or 30 nM siRNA-negative control (AM4635),
siEREG (145900) and siHOXB9 (109525; all from
Ambion) 24 h after seeding using Lipofectamine RNAi-
MAX transfection reagent (Invitrogen) according to the
manufacturer’s protocol. Transfection efficiency was
evaluated by RT-qPCR.

Cell proliferation and MTT assay
Cells were seeded in triplicates in 10% DMEM without

antibiotics in 24-well plates 24 h before transfection and
counted 24–96 h after transfection. Cell viability was
measured using the MTT assay (Sigma Aldrich, Saint
Louis, MO, USA). The absorbance was measured on
Multi-Detection Microplate Reader (BIO-TEK, Winooski,
VT, USA).

Colony-forming assay
Colony-forming assay was performed using six-well

plates pre-coated with 0.75% agarose as the bottom layer,
whereas the top layer consisted of 0.35% agarose and
tumor cells transfected with miR-215 mimics or control
oligonucleotide. After 12–14 days, colonies were stained
with crystal violet blue solution (Sigma-Aldrich) and
scanned by GelCount (Oxford Optronix, Abingdon, UK).
The data were analyzed using ImageJ software (Wayne
Rasband, NIH, MD, USA).

Cell cycle analysis and detection of apoptosis
Cell cycle analysis and detection of apoptosis were

performed using flow cytometry as described previously11.
The cells were analyzed 72 and 96 h post-transfection.

Scratch wound migration assay
The migration of cells was analyzed using scratch

wound migration assay. Cells were seeded on six-well
plates and the cell monolayer was wounded 24 h after the
transfection. The migration was measured at time 0 and
24 h post-wounding using a microscope Nikon Diaphod
300 INV (10× ) and camera Canon Power shot A95.
Images were analyzed by the Tscratch software (CSElab,
ETH Zurich, Switzerland).

Transwell migration assay
Transwell migration assay was performed using 8 µm

transwell inserts for 24-well plates (Costar, Corning
Incorporated, Corning, NY, USA) and staining with
Hoechst 33342 (Invitrogen). The migrated cells were
counted using fluorescence microscope and ImageJ soft-
ware (Wayne Rasband).

Luciferase assay
For luciferase reporter assay, MISSION 3′-UTR Lenti

GoClone HOXB9 (HUTR10238) and appropriate negative
control (HUTR001C) from SwitchGear Genomics
(Carlsbad, CA, USA) were used and the viral particles
were added at MOI (multiplicity of infection)= 2.5. In
case of EREG, 1 µg of pEZX-MT05 vector containing UTR
for EREG (HmiT004978) or appropriate control vector
(CmiT000001-MT05) were transfected into DLD-1 cells
using EndoFectin Plus Transfection Reagent (GeneCo-
poeia, Rockville, MD, USA). The luciferase activity was
measured using the MISSION LightSwitch Luciferase
Assay Reagent (Sigma Aldrich) or SecretePair Dual
Luminescence assay kit (GeneCopoeia), respectively,
using FLUOstar Omega Microplate reader (BMG Lab-
tech, Ortenberg, Germany).

Western blotting
Cells were seeded in 60mm plates and 48 h after

transfection they were lysed with RIPA buffer (Sigma-
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Aldrich) containing Complete mini protease and phos-
phatase inhibitor cocktail tablets (Roche, Basel, Switzer-
land). Protein quantification was performed using the
Bradford protein assay (Bio-Rad, Hercules, CA, USA) and
10 µg of lysate was loaded per lane. Proteins were resolved
by 8 or 10% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis gel and wet transferred to polyvinylidene
difluoride membrane (EMD Millipore, Billerica, MA,
USA). The signals were visualized by ECL Prime Western
blotting Detection Reagent (Amersham, Piscataway, NJ,
USA) and exposed to AGFA Curix X-ray film (AGFA,
Mortsel, Belgium). The following Ab were used: anti-
HOXB9 (1:100, mouse, sc-398500) from Santa Cruz
Biotechnology Inc. (Dallas, TX, USA) and anti-EREG
(1:1000, rabbit, 12048 S), anti-PARP (1:1000, rabbit,
9542 S) and anti-β-tubulin (1:2000, rabbit, 2146 S) from
Cell Signaling Technology (Danvers, MA, USA).

Generation of stable cell line overexpressing miR-215-5p
Stable transfectants were generated using OriGene’s

pCMV6-Mir vectors with miR-215-5p precursor or con-
trol sequence and TurboFectin 8.0 (OriGene Technolo-
gies, Rockville, MD, USA). Stable clones were selected
using 300 µgml−1 G418 (Sigma Aldrich). The stable
expression of miR-215-5p was evaluated by RT-qPCR.

In vivo tumorigenicity assay
Five NSG mice (males, 8‒10 weeks old, 21‒26 g, initially

obtained from The Jackson Laboratory, Bar Harbor, USA)
were housed and monitored in individually ventilated
cage system (Techniplast, Buguggiate, Italy) with ad libi-
tum access to water and feeding. The assay was performed
according to the protocol described previously46, 47.
Tumors have been palpable since day 14 and mice were
sacrificed on day 25. During the experiment, tumor
growth and animal behavior were individually monitored.
Animal experiments were performed in accordance with
national and EU animal welfare legislation and all pro-
cedures were approved by institutional (Masaryk Uni-
versity, Brno) and national ethics committees.

Data normalization and statistical analyses
The threshold cycle data were calculated by Quant-

Studio 12 K Flex software using the default threshold
settings. All real-time PCR reactions were run in tripli-
cates and average threshold cycle and SD values were
calculated. The average expression levels of miR-215-5p
in tumor and adjacent non-tumor tissues, as well as in the
cell lines were normalized using RNU48 as a reference
gene, the expression of EREG and HOXB9 was normal-
ized using PMM1 (in case of tissue samples) or GAPDH
(in case of cell lines) as a reference genes; subsequently, all
data were transformed by the 2−ΔCt method. Statistical
differences between the levels of miR-215-5p in tumor

and non-tumor tissues were evaluated by the non-
parametric Wilcoxon test for paired samples. Further-
more, Mann–Whitney U-test was used to analyze the
correlation between miR-215-5p expression levels and
clinical–pathological features of the patients. Survival
analyses were performed using the log-rank test and
Kaplan–Meier plots approach. For in vitro and in vivo
analyses, the two-sided Student's t-test was used to
compare the mean values between two groups. Data are
presented as the mean values with SD unless otherwise
noted (all in vitro measurements were repeated three
times). All calculations were performed using GraphPad
Prism version 5.00 (GraphPad Software, San Diego, CA,
USA). P-values of <0.05 were considered statistically
significant.
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